Indoor secondary pollutants from household product emissions in the presence of ozone. A bench-scale chamber study

Hugo Destaillats1,*, Melissa M. Lunden1, Brett C. Singer1, Beverly K. Coleman2, Alfred T. Hodgson1, Charles J. Weschler3 and William W Nazaroff 1,2

1 Indoor Environment and Atmospheric Sciences Departments, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA.
2 Civil & Environmental Engineering Department, University of California, Berkeley, CA 94720-1710 USA. 3 Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey & Rutgers University, Piscataway, NJ 08854 USA, and International Centre for Indoor Environment and Energy, Technical University of Denmark.

Abstract

Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30\% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of

* corresponding author E-mail: HDestailats@lbl.gov
secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range $0.04-200 \times 10^5$ molecules cm$^{-3}$ were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range $1-25$ ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

Introduction

The use of cleaning products and air fresheners indoors can cause inhalation exposure of cleaning personnel and building occupants to toxic air contaminants (TACs) ($1, 2$). In addition to direct emission of toxic constituents, many products contain terpenoids that can react rapidly with ozone yielding secondary pollutants, including secondary organic particulate matter (3). Ozone is commonly present indoors owing to intrusion from outdoor air. Indoor sources of ozone also exist, including some office equipment and certain “air purifiers” that can generate indoor ozone levels of hundreds of ppb ($4, 5$). The products of ozone reactions with terpenoids include volatile carbonyls, some of which are TACs (e.g., formaldehyde and acetaldehyde). Ozone-terpenoid reactions also produce the hydroxyl radical. Due to their high reactivity, these species can generate additional TACs different from those directly produced by terpene-ozone reaction and increase the yields of certain products such as formaldehyde and aerosol particles (6).

Little is known about the indoor concentrations of TACs as secondary pollutants from cleaning products and air fresheners. Such concentrations depend on the complex interplay of many factors and processes, including product composition, usage, emission dynamics, transport
and mixing, building ventilation, sorptive interactions with building surfaces and reactive
chemistry. The goal of this study is to provide experimental information on the rate and extent of
formation of secondary pollutants from terpenoid-containing household products in the presence
of ozone. Bench-scale chamber experiments permit control of key variables such as reagent
concentrations, mixing ratios, air-exchange rate, temperature and relative humidity.

Experimental methods

Reaction chamber and ancillary apparatus

The reaction of ozone with cleaning product/air freshener components was studied in a
198-L stainless-steel flow reaction chamber, internally lined with FEP-Teflon film. The chamber
was operated under positive pressure and was provided with two inlet ports on opposite corners
and an outlet port. A constant flow of air and the product gas-phase components was introduced
into one port, and an air stream containing ozone was admitted at the other inlet. Chamber
temperature and RH were measured and continuously recorded. The experimental apparatus was
housed in a 20-m3 environmental room at $23.0 \pm 0.5 \, ^{\circ}\text{C}$. The main airflow to the chamber, of
compressed “zero quality” air, was split between a dry and a humidified stream and adjusted
using mass flow controllers to obtain an RH between 40 and 60%. Well-mixed conditions within
the chamber were demonstrated with SF$_6$, which was introduced at either inlet and continuously
monitored at the outlet using an infrared analyzer. The all-Teflon reactor minimized the surface
interactions of the studied chemicals, including ozone decomposition on surface materials.

Ozone was generated by means of UV irradiation of an airstream flowing at 100 mL/min.
Immediately before and after each run, the ozone inlet concentration was measured directly
employing a calibrated ozone monitor, to determine the amount of O$_3$ introduced in the chamber
and to verify its stability. Otherwise, the ozone monitor continuously sampled from the chamber.
outlet and the data were logged at 1-min intervals. In preliminary runs, we verified that inlet concentrations accurately represented ozone chamber concentrations in the absence of VOCs. Flows of background air, product components and ozone were measured before and after the experiments with a precision better than 2%.

Characterization and delivery of household products emissions

Three common US retail products containing ozone-reactive chemicals were employed: a general-purpose pine oil-based cleaner (POC), an orange oil-based degreaser containing d-limonene as the sole active ingredient (OOD), and a plug-in scented-oil air freshener (AFR). Gas-phase components of the first two products were delivered to the reaction chamber from an 80-L Tedlar bag prepared by adding a measured amount of the product and air, heating in an incubator at 50 °C for 2 h, and then cooling to room temperature. A peristaltic pump delivered a constant flow (in the range 20-100 mL/min) into the main airflow. For the air freshener, an 80-L stainless steel drum replaced the Tedlar bag. Inside the drum, the product was continuously electrically powered, as in ordinary use, and a stream of air flowing at 100 mL/min introduced the volatile components into the main air stream. Experiments were designed to closely replicate VOC concentrations determined during realistic use of the products in a 50-m³ chamber. Composition of the gas-phase emissions from the selected products was determined in previous work. The three main volatile ingredients of POC were d-limonene, terpinolene and α-terpineol. Other monoterpenes were detected in smaller quantities (α- and γ-terpinene, α- and β-pinene, camphene, γ-terpineol and α-phellandrene), together with additional VOCs (p-cymene, eucalyptol). Organic emissions from the OOD were exclusively d-limonene. By contrast, more than 30 volatile components were detected from the AFR, including d-limonene and a variety of alcohols (linalool, dihydromyrcenol, β-citronellol) and esters (linalyl acetate, bornyl acetate).
Sampling and analytical methods

VOCs were sampled onto Tenax®-TA sorbent tubes connected in parallel immediately after the outlet port. Two adjacent sampling ports were used to collect samples on DNPH-coated silica cartridges preceded by an ozone scrubber to determine volatile carbonyls and on NaOH-coated silica cartridges to determine volatile carboxylic acids. Ozone scrubbing was determined to be unnecessary for the VOC by collecting simultaneous samples of different volumes.

VOCs collected in Tenax sorbent tubes were analyzed by thermal desorption-gas chromatography-mass spectrometry (TD/GC/MS) using an HP6890 GC equipped with a Chrompack TCT 4020 desorber with cryogenic trap and interfaced to an HP5973 mass selective detector (MSD) that operated in electron impact mode. Details of the GC-MSD method are given elsewhere (8). DNPH-coated cartridges were extracted with 2 mL acetonitrile. DNPH-carbonyl derivatives present in the extracts were analyzed at 360 nm by HPLC provided with a UV detector. NaOH-coated silica cartridges were extracted with deionized water, and the extracts were analyzed by ion chromatography.

Experimental procedure

We investigated the effect of two parameters on each of the three products: reaction time using air exchange (ach) rates of 1 ach and 3 ach, and the ozone level using 120-130 (high) and 60 ppb (moderate) inlet concentrations. The effect of low (30 ppb) and very high (250 ppb) inlet O₃ levels were also investigated with the POC product. VOC concentrations in the reaction chamber were determined at the beginning of each experiment before ozone was added, during the first 2-4 h. Subsequently, ozone was introduced at a constant flow rate and VOC concentrations were again measured once steady state was achieved. Reactant consumption and product yields were calculated by difference.
Determination of OH radical concentration

For determination of OH radical concentrations, we adopted a method employed by Weschler and Shields (9). A stream of 1,3,5-trimethylbenzene (TMB) and perchloroethylene (PCE) was generated with diffusion tubes placed in a thermostat at 40 °C and supplied at a constant rate to the reaction chamber. The TMB/PCE ratio was used to estimate the concentration of OH radical in the system, assuming that TMB reacted significantly with OH but negligibly with O₃ at our short residence times; PCE served as an inert tracer. Both chemicals were sampled on Tenax sorbent tubes in the absence and presence of ozone, and analyzed by TD/GC/MS.

Particle sampling

Particle size distributions of sampled chamber air were measured with a scanning mobility particle sizer (SMPS) system that utilized a differential mobility analyzer (3071A, TSI Inc.) coupled with a condensation particle counter (3760, TSI Inc.). The system was configured to measure particle sizes from 8 to 412 nm. Size distributions were obtained at 1-min intervals using software developed by Donald Collins (Texas A&M University) and Patrick Chuang (UCSC). For selected experiments, an optical particle counter (OPC, Lasair 1003) extended the particle size range up to 2 µm. Aerosol particle sampling was performed continuously, starting before the introduction of ozone.

Surface application

Separately, the reactions of ozone with semivolatile or nonvolatile components of the POC and the OOD were evaluated through the application of a 0.5-mL aliquot to a 0.09 m² glass plate. After removing the excess liquid, the plate was placed in a 10-L stainless steel cell and exposed for 1.5 h to a N₂ flow at an air-exchange rate of 3 ach to remove the more volatile
components. At the end of the volatilization period, only \(\alpha\)- and \(\gamma\)-terpineol were still evidently being emitted by the surface from the POC application, and no VOCs were detected for the OOD. The plate was then placed in the 198-L reaction chamber, which had been previously conditioned at 120 ppb O\(_3\) and operated at an air-exchange rate of 1 ach. The plates were exposed to ozone under the same conditions for 24 hours. Chamber ozone and aerosol concentrations were monitored continuously starting before the introduction of the plate. VOC and carbonyl samples were collected periodically.

Results and Discussion

In Figures 1-2 and Tables 1S-3S we present data obtained from experiments with the three household products in the presence of various levels of ozone in supply air and at low and high residence times (air-exchange rates of 3 ach and 1 ach, respectively). In the tables, the values shown in the concentration (C) column are ozone in the absence of reactive VOCs and VOCs before addition of ozone. Oxidation product concentrations are those measured at steady state in the presence of ozone. For oxidation products that were present before ozone was added (acetone and acetic acid), the value reported in Tables 1S-3S represents the increase due to reaction, i.e., the difference between those measured with and without ozone. The second data column indicates the fractions of ozone and VOCs that reacted and the yield of oxidation products. Percent yield is the ratio of oxidation product generated (ppb) to ozone consumed (ppb) during the reaction. Ozone consumption was calculated as the difference between inlet and residual ozone levels. Figures 1 and 2 illustrate the VOC consumption and oxidation product yields for each condition. In Figures 2-A and 2-C, total yields higher than 100% indicate that some products may have originated at more than one step in the oxidation sequence or that OH
radicals generated in terpene-ozone reactions are involved in the production of additional oxidation products.

For the seven VOC components from the POC shown in Table 1S, only one — \(\alpha \)-terpinene — reacted substantially and unambiguously under all test conditions. Four compounds — d-limonene, terpinolene, and \(\alpha \)- and \(\gamma \)-terpineol — reacted substantially in some test conditions. Eucalyptol and p-cymene were relatively inert, as expected based on their bimolecular rate constants with ozone. The results for \(\alpha \)-terpineol for the high ozone and high air-exchange condition suggest reactivity towards ozone that is similar to that of d-limonene, in agreement with a recent determination (10). Its isomer, \(\gamma \)-terpineol, reacted at faster rates, similar to those of terpinolene. The \(\alpha \)-terpineol results are not consistent between the two high ozone experiments. The reproducibility of \(\alpha \)-terpineol concentrations among samples collected in the same steady-state period also was low. These observations might be related to sorption of \(\alpha \)-terpineol on chamber surfaces. The vapor pressures of the major constituents of the POC are relatively high (between 0.6 and 5 torr), while that of \(\alpha \)-terpineol is roughly two orders of magnitude lower (0.023 torr) (11). In the high ozone experiments about 90% of the \(\alpha \)-terpinene was consumed, compared with roughly 30-40% of the terpinolene and 15-20% of the d-limonene. For these three species, the apparent relative reactivity was roughly proportional to the product of their concentration and their reported reaction rates with ozone: \(2 \times 10^{-14} \), \(2 \times 10^{-15} \) and \(2 \times 10^{-16} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\), respectively (12). Ozone was substantially titrated by the excess of reactive VOCs in all experiments, so that the steady-state ozone level in the chamber was no greater than 10% of that in the supply air. Consistent with expectations, the table reveals that across all five ozone levels the observed extent of reaction depended more on the residual ozone level, which varied from < 1 ppb to ~ 25 ppb, than on the characteristic reaction time, which only
varied from 0.3 to 1.0 h. The fraction of α-terpinene, terpinolene and d-limonene consumed in each condition is shown in Figure 1-A.

In Figure 1-B and Table 2S, we present data from exposing the emissions of OOD to ozone. Owing to the large excess in d-limonene, and although this chemical readily reacts fully to the extent possible based on the amount of ozone present, ~20% of this species reacted under high ozone and 10% under low ozone conditions, while consuming more than 80% of the chamber ozone at 3 ach, and almost completely depleting it (95%) at 1 ach.

The formulation of AFR was the most complex among the studied products, with more than 30 components. A higher extent of sorption can be attributed to the fact that vapor pressures of alcohols and esters in AFR were significantly lower than those of hydrocarbons from POC and OOD. Only five AFR components exhibited significant reactivity toward ozone under these experimental conditions, including linalool and d-limonene, the two most reactive ingredients. The concentration of linalool was about twice as high as that of d-limonene. Two different reports have placed the reaction rate of linalool with ozone at values that are similar to or slightly higher than that of d-limonene: at $k < 3.16 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $k = 4.3 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ ($I2$). Their reaction rates with OH radicals are comparable, $k = 1.69 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for d-limonene and $k = 1.59 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for linalool ($I2$). We observed that linalool was more completely consumed, except for the moderate ozone condition in which d-limonene showed similar reactivity. Other reactive species in the air freshener were dihydromyrcenol, linalyl acetate and β-citronellol. While data on the bimolecular reaction rate of these terpenoids with ozone have not been published, our results suggest that the reaction rate of β-citronellol is comparable to that of linalool, the rate of linalyl acetate compares to that of d-
limonene and dihydromyrcenol reacts at a slower rate. Experimental data are shown in Table 3S and plotted in Figure 1-C.

Volatile oxidation products

Formaldehyde yields were similar for the reaction of POC and OOD with ozone (in the range 20-30% for most conditions) and higher for AFR (30-90%). The fact that several distinct terpene-based products led to high formaldehyde yields in the presence of ozone is an important result of this study, since formaldehyde is a toxic air contaminant with a low chronic reference exposure level (13). Although formaldehyde can be generated at various steps of oxidation of most reactive VOCs (not only by ozonation but also through reaction with OH radicals and other oxidant species) its principal chemical source in our system is the ozonation of d-limonene and, when present, linalool. Formaldehyde is produced as a primary carbonyl during ozonation of the terminal alkene group in d-limonene with a yield of \(\phi_F = 0.10 - 0.19 \) (14). The contribution of that reaction to total formaldehyde production \((X_{primary}) \) can be estimated for the OOD data shown in Table 2S, assuming that d-limonene is the single reactant and formaldehyde is the only carbonyl detected:

\[
X_{primary} = \frac{\phi_F [O_3]_{consumed}}{[F]_{produced}}
\]

(1)

Considering a lower limit for the formaldehyde yield of \(\phi_F = 0.10 \), the fraction of formaldehyde generated as a primary carbonyl in the ozonation of d-limonene from the OOD is \(X_{primary} = 0.33 \) for high O\(_3\) and 3 ach, 0.40 for high O\(_3\) and 1 ach, and 0.45 for moderate O\(_3\) and 3 ach. Higher yields of formaldehyde measured in AFR experiments are probably due to the presence of two reactive VOCs that generate formaldehyde as the primary carbonyl during ozonation (d-limonene and linalool). Similarly, the high acetone concentration measured for POC and AFR
likely originated in the primary ozonation of terpinolene and linalool, respectively. Background
levels of oxidation products before ozone addition were negligible except for acetone, present at
5 ppb in POC.

Oxidation product yields reported for AFR in Table 3S show a significant increase for
experiments at 1 ach (up to 90 % for formaldehyde), suggesting an important effect owing to the
longer residence time that was not observed with POC and OOD. Low vapor pressures can be
expected for several AFR components that exhibited GC retention times higher than those of
POC components. Likely, such species can sorb to surfaces and react there with ozone in the
chamber, thus contributing to the measured gas-phase concentration of oxidation products. While
sorption of semivolatile components may be viewed as a limitation of the chamber method
employed here, these results are of interest considering that similar processes would likely occur
on indoor surfaces, possibly leading to analogous production of volatile oxidation products.

Considering the two volatile carboxylic acids detected, formic acid is an oxidation
product of formaldehyde and is present at 30-80% of the formaldehyde level. Acetic acid is
generated either in tertiary oxidation reactions or by hydrolysis of esters. In particular,
background levels (i.e., without ozone) of acetic acid were high for AFR (160-170 ppb),
presumably due to partial hydrolysis of major fragrance components such as borneol acetate,
linalyl acetate or phenylethyl acetate.

Glycolaldehyde is a biogenic VOC commonly measured together with terpenes and their
oxidation products in environmental samples. Spaulding et al. (15) identified glycolaldehyde
among other oxygenated airborne chemicals collected at a pine plantation. Glycolaldehyde in our
study is likely generated in the reaction of OH with partially oxidized terpenes. High yields of
glycolaldehyde have been measured in the reaction of OH with biogenic VOCs such as 2-
methyl-3-buten-2-ol, MBO, (~60%), allyl alcohol (47%), 1-penten-3-ol (87%) and Z-2-penten-1-
ol (90%) (16-18). We did not obtain a positive identification for benzaldehyde, methylglyoxal or
acrolein, but cannot rule out the presence of acrolein owing to sampling limitations.

OH radical concentrations

We determined the concentration of OH radicals in the system through measuring its
reaction with 1,3,5-trimethylbenzene. Figure 3 shows the OH concentrations measured at each
condition for the three products as a function of the residual O₃ concentration in the chamber.
These results are consistent in magnitude with those of Weschler and Shields (9) employing d-
limonene and ozone mixtures, as well as with direct OH determinations in ozone/alkene mixtures
using a laser-induced fluorescence method (19). The OH radical is short-lived, so that its
concentration effectively depends on the dynamic balance between the rate of production and the
rate of consumption by chemical reactions. Those rates depend on concentrations of residual
ozone and reactive VOCs. The pseudo-steady state balance can be approximated as:

\[
[OH] = \frac{\sum k_i y_i [O_3][U_i]}{\sum_i h_i[U_i] + \sum_j h_j[S_j]}
\]

where \(k_i\) is the bimolecular reaction rate between ozone and the unsaturated chemical \(U_i\); \(y_i\) is the
corresponding OH formation yield; \(h_i\) and \(h_j\) are the bimolecular reaction rates for OH with
unsaturated \((U_i)\) and saturated \((S_j)\) VOCs, respectively. High OH yields, between 0.38 and 0.74,
have been reported for several of the studied terpenes (20). Typical \(k_i\) values are in the range \(10^{-17}\)
\(\text{cm}^3\) molecule\(^{-1}\) s\(^{-1}\), while \(h_i\) is in the range of \(5 \times 10^{-10}\) to \(5 \times 10^{-11}\) \(\text{cm}^3\) molecule\(^{-1}\) s\(^{-1}\) and \(h_j\)
is in the range of \(5 \times 10^{-11}\) to \(5 \times 10^{-12}\) \(\text{cm}^3\) molecule\(^{-1}\) s\(^{-1}\) (12). Equation 2 does not explicitly
consider possible reactions of OH with secondary products from ozone-terpene reactions, which result in additional sinks for OH.

For cases in which the terpenoids are the most significant OH sinks (i.e., $\sum_{i} h_{i}[U_i] \gg \sum_{j} h_{j}[S_j]$), the steady-state OH radical concentration can be estimated in terms of only the concentration of ozone and the unsaturated VOCs (U_i), as follows:

$$[OH] = [O_3] \left(\frac{\sum_{i} k_{i} y_{i} [U_i]}{\sum_{i} h_{i} [U_i]} \right)$$

(3)

The dominance of terpenoids as OH sinks appears to be a good approximation for our experiments with POC and OOD, but is less accurate for AFR, which contains substantial quantities of saturated species in addition to the terpenoids. In the case of OOD, which contains only one reactive unsaturated VOC (d-limonene), the approximate equation can be further simplified to be independent of the concentration of d-limonene:

$$[OH] = [O_3] \frac{k_{i} y_{i}}{h_{i}}$$

(4)

Figure 3 includes traces that correspond to the simplified models expressed by equations 3 and 4. The magnitude and trend agreement between these approximation and the experimentally determined OH level indicates that the simple models capture the key features of OH radical chemistry in these experiments, particularly at the higher air-exchange rate. Model overestimates for the lower air-exchange rates may be a consequence of the relatively higher concentrations of secondary oxidation products that would constitute an important additional sink for OH radicals.
Secondary organic aerosol formation

Figure 4 shows the temporal evolution of airborne particle number concentration (A), volume concentration (B) and size distribution (C) for particles in the size range 8 - 412 nm measured with the SMPS in one experiment where AFR volatile components were exposed to moderate ozone levels (63 ppb inlet concentration). Total number and volume concentration were calculated by integration from the size distribution, and therefore do not account for particles that have grown out of the measurement range of the SMPS. Qualitatively similar behavior was observed for all household products and experimental conditions. The most distinctive feature in all cases was the burst of ultrafine particle nucleation that occurred immediately upon ozone addition (indicated with an arrow in frame C). Qualitatively, these results are consistent with recent reports of ultrafine particle formation and growth during the reaction of ozone with terpenes (21-23). Remarkably, the production of ultrafine aerosol particles observed here is similar in its main features to nucleation events observed in the atmosphere (24, 25) although the mixing ratio of terpenoids to ozone is significantly higher in our experimental conditions where ozone is virtually titrated by the large excess of the reactive alkene.

The total particle number concentrations, together with their corresponding aerosol mass (assuming density = 1 g/cm³) are reported in Table 4S. We report values for the ultrafine fraction (< 0.1 μm diameter, PM_{0.1}), for the total particles measured with the SMPS (PM_{0.4}) and, when available, for total particles measured with the optical counter (PM_{2.0}). Data were calculated at both peak conditions (~ 20 – 40 minutes after initial introduction of O₃ to the system) and at steady-state conditions (> 2 h or > 4 h after the start of O₃ addition for 3 ach and 1 ach, respectively). Initial particle growth rates in the range 2 – 6 nm min⁻¹ are also reported in Table 4S. The large number of particles measured at the peak of the burst was predominantly in the
ultrafine fraction (diameter < 0.1 µm), although larger particles accounted for 70 – 80 % of the peak particle mass under most experimental conditions. Peak particle concentrations scaled in proportion to the ozone and VOC consumed. When the amount of ozone and VOC that reacted at each experimental condition was similar for the three household products, the amount of PM$_{0.1}$ produced at the peak was largest for POC, followed by OOD and AFR. Such differences can be rationalized by considering the combined product of the initial concentrations of the reactive VOCs (U_0) and their reaction rate with ozone (k_{O_3}), $\sum_i U_0 k_{O_3}$, which varied in the same order (POC > OOD > AFR). In addition, characteristics of the reaction byproducts are expected to affect the nucleation process. For example, the four reactive VOCs in the POC and the single reactive terpene in OOD (d-limonene) each have at least one endocyclic unsaturation that yields C$_{10}$ primary oxidation products upon ozonation. Conversely, of the four most reactive constituents in AFR, three react with ozone to fragment their carbon backbone, yielding products with 9 or fewer carbon atoms, and therefore less likely to nucleate or condense. Experiments run at 1 ach showed lower peak particle production than at 3 ach for POC and OOD. However, for AFR, the trend was reversed.

At steady state, the ultrafine particle concentrations were markedly lower than the peak values, representing 30-70 % of the total number concentration and only 1-4 % of the total mass concentration for most experimental conditions. Following nucleation, aerosol aging processes led to particle growth from the ultrafine to the accumulation mode (0.1-2 µm diameter) as shown in Figure 4. An estimation of aerosol particle yield (mass/mass) can be obtained from the ratio of the steady-state PM$_{2.5}$ mass concentration (when available) to the sum of reacted VOCs concentration in each product. We so determined yields of 6-14 % for POC components, 11-16% for OOD (using PM$_{0.4}$ values) and 4-6 % for AFR. Yields determined for POC and OOD are
similar to those reported for ozone/d-limonene reactions (26, 27). The relatively lower values for AFR are consistent with reported observations for reactions of linalool with ozone (27).

Surface application

A dry residue was obtained by applying a small quantity of the POC or the OOD to a glass plate, allowing it to dry under a flow of nitrogen to remove the volatile components. During subsequent exposure of the dry POC residue to ozone in the reaction chamber, initially high concentrations of α- and γ-terpineol (~ 1 ppm and 100 ppb, respectively) were measured at 15 and 100 min after introducing the plate. A measurement at 200 minutes showed declining values for the concentrations of the two terpenoids (350 and 15 ppb respectively). During the first 3 h of ozone exposure, we observed the production of formaldehyde (with an average concentration during that period of 4.6 ppb), acetaldehyde (0.9 ppb), acetone (9.9 ppb) and glycolaldehyde (1.5 ppb). Figure 5 shows the evolution of the ozone concentration in the chamber during the experiment (Fig 5-C) together with the measurement of aerosol particle number (Fig 5-A), volume (Fig 5-B) and particle size distribution (Fig 5-D). We observed a burst of ultrafine particle formation during the initial exposure of reagents that was similar to those measured in gas-phase experiments. The time evolution of the particle volume concentration mirrors closely the ozone curve shown in Fig 5-C. Owing to the combined ozone exposure of the terpenoid reactants in both the gas phase and on the surface, we cannot discern the degree to which the observations are a result of homogeneous versus heterogeneous chemistry. However, when the same experiment was performed with dry residue from OOD, no primary VOCs were detected in the gas phase during the exposure to ozone but we did observe the formation of oxidation products during the initial 4 h of exposure (3.3 ppb formaldehyde, 2.8 ppb acetaldehyde and 11 ppb acetone). A burst of ultrafine particles and secondary aerosol growth similar to that shown in
Figure 5 for POC was also observed when OOD dry residue was exposed to ozone. These tests suggest that delayed desorption of reactive terpenoids of low volatility or the reaction of nonvolatile chemicals on the surface may constitute a source of secondary oxidation products and secondary organic aerosol.

Significance

This laboratory investigation illustrates the potential impact of ozone-initiated chemistry involving constituents of common household products and leading to the formation of secondary gaseous pollutants and particles. Widespread use of cleaning products and air fresheners in close proximity to humans suggests that the reactive chemistry presented here may contribute significantly to indoor exposure to certain toxic air contaminants and to ultrafine secondary organic aerosol. Key findings include:

• Confirmation that terpenoids present in household products react with ozone to produce high yields of formaldehyde (up to 90 %) and other TACs.
• High hydroxyl radical concentrations at levels that can generate other TACs.
• The same reactions contribute to the formation of ultrafine particles with yields of 4-16%.
• Ozone was the limiting reagent at levels 1-25 ppb; thus, in locations of high outdoor ozone levels similar product use may lead to even higher exposures to TACs and aerosols.
• Formaldehyde and aerosols were produced from the exposure of product dry residue to ozone, indicating that surface reactions can be an additional significant source of indoor pollutants.

Acknowledgements

This work was funded by the California Air Resources Board, Contract No. 01-336. The statements and conclusions are those of the researchers and not necessarily those of the
California ARB. The mention of commercial products, their source, or their use in connection
with the material reported herein is not to be construed as actual or implied endorsement of such
products. All work at LBNL was conducted under U.S. DOE Contract No. DE-AC02-
05CH11231. We thank Peggy Jenkins (ARB), Dorothy Shimer (ARB) and Thomas Kirschstetter
(LBNL) for their review comments on a draft version of the manuscript.

References

1. Nazaroff WW, Weschler CJ. Cleaning products and air fresheners: exposure to primary and secondary air

2. Wolkoff P, Schneider T, Kildeso J, Degerth R, Jaroszewski M, Schunk H. Risk in cleaning: chemical and

7. Singer BC, Destaillats H, Hodgson AT, Nazaroff WW. Cleaning products and air fresheners: emissions and
resulting concentrations of glycol ethers and terpenoids. *Indoor Air* **2005**, *in press*

8. Singer BC, Hodgson AT, Guevarra KS, Hawley EL, Nazaroff WW. Gas-phase organics in environmental
tobacco smoke. 1. Effects of smoking rate, ventilation, and furnishing level on emission factors. *Environ.

9. Weschler CJ, Shields HC. Measurements of the hydroxyl radical in a manipulated but realistic indoor

10. Wells JR. Gas-phase chemistry of α-terpineol with ozone and OH radical: Rate constants and products.

Figure Captions

Figure 1 Consumption of reactive VOCs from (A) pine-oil based cleaner; (B) orange oil-based degreaser and (C) plug-in air freshener. Error bars indicate S.D. (n=2). Ozone consumption for the same experiments was 82-100 %, being the limiting factor that prevented further VOC loss.

Figure 2 Yield of oxidation products relative to ozone consumption (mole/mole) for (A) pine-oil based cleaner; (B) orange oil-based degreaser and (C) plug-in air freshener.

Figure 3 Hydroxyl radical concentration versus residual ozone concentration for experiments with (A) pine-oil based cleaner, (B) orange oil-based degreaser, and (C) plug-in air freshener. Solid traces correspond to simplified models expressed by equations 3 and 4. Error bars indicate S.D. (n=2).

Figure 4 SMPS measurements of secondary organic aerosol particles generated in the reaction of plug-in air freshener VOCs with ozone at moderate levels (63 ppb in supply air) and 3 ach: (A) particle number concentration; (B) particle volume concentration; (C) particle size distribution in the range 8-412 nm. Dp is the particle aerodynamic diameter. Numbers indicated in boxes correspond to the particle number concentration (# cm⁻³) for each contour line.

Figure 5 SMPS measurements of secondary organic aerosol particles generated when a plate containing dry residue of a pine oil-based cleaner was introduced in the chamber operating at high ozone levels (120 ppb in supply air) and at 1 ach: (A) particle number concentration; (B) particle volume concentration; (C) ozone chamber concentration; (D) particle size distribution in the range 8-412 nm. Dp is the particle aerodynamic diameter. Numbers indicated in boxes correspond to the particle number concentration (# cm⁻³) for each contour line.
TABLE 1S. Reaction of Ozone with Pine Oil-Based Cleaner Components

<table>
<thead>
<tr>
<th>Species</th>
<th>very high O₃; 3 ach</th>
<th>high O₃; 3 ach</th>
<th>high O₃; 1 ach</th>
<th>moderate O₃; 3 ach</th>
<th>low O₃; 3 ach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (ppb)</td>
<td>reacted (%)</td>
<td>C (ppb)</td>
<td>reacted (%)</td>
<td>C (ppb)</td>
</tr>
<tr>
<td>Ozone a</td>
<td>253 ± 4</td>
<td>90 ± 10</td>
<td>131 ± 4</td>
<td>90 ± 7</td>
<td>130 ± 13</td>
</tr>
<tr>
<td>VOC components b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-terpinene</td>
<td>22.5 ± 1</td>
<td>96 ± 2</td>
<td>25 ± 1</td>
<td>92 ± 3</td>
<td>25 ± 2</td>
</tr>
<tr>
<td>d-limonene</td>
<td>204 ± 6</td>
<td>25 ± 2</td>
<td>219 ± 2</td>
<td>17 ± 0.7</td>
<td>229 ± 6</td>
</tr>
<tr>
<td>p-cymene</td>
<td>40 ± 2</td>
<td>-3 ± 3</td>
<td>41 ± 0.5</td>
<td>1.2 ± 1.3</td>
<td>42 ± 2</td>
</tr>
<tr>
<td>Eucalyptol</td>
<td>53 ± 2</td>
<td>-3 ± 2</td>
<td>58 ± 0.4</td>
<td>3.3 ± 0.5</td>
<td>60 ± 2</td>
</tr>
<tr>
<td>Terpinolene</td>
<td>240 ± 8</td>
<td>66 ± 4</td>
<td>266 ± 12</td>
<td>43 ± 3</td>
<td>266 ± 14</td>
</tr>
<tr>
<td>α-terpineol</td>
<td>146 ± 3</td>
<td>23 ± 2</td>
<td>149 ± 4</td>
<td>14 ± 2</td>
<td>104 ± 3</td>
</tr>
<tr>
<td>γ-terpineol</td>
<td>18 ± 2</td>
<td>66 ± 5</td>
<td>13 ± 2</td>
<td>41 ± 8</td>
<td>12 ± 1</td>
</tr>
<tr>
<td>Volatile oxidation products c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>59 ± 1</td>
<td>26 ± 1</td>
<td>34.5 ± 1</td>
<td>28 ± 1</td>
<td>35 ± 0.5</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>4.4 ± 0.8</td>
<td>1.9 ± 0.3</td>
<td>2.2 ± 2.3</td>
<td>1.0 ± 1.3</td>
<td>2.2 ± 1.2</td>
</tr>
<tr>
<td>Acetone</td>
<td>123 ± 3</td>
<td>54 ± 1</td>
<td>81 ± 5</td>
<td>66 ± 4</td>
<td>83 ± 3</td>
</tr>
<tr>
<td>Glycolaldehyde</td>
<td>17 ± 2</td>
<td>7.4 ± 0.7</td>
<td>11 ± 0.3</td>
<td>4.9 ± 0.1</td>
<td>12 ± 0.4</td>
</tr>
<tr>
<td>Formic acid</td>
<td>40 ± 9</td>
<td>17 ± 4</td>
<td>26.5 ± 4</td>
<td>22 ± 4</td>
<td>12 ± 5</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>55 ± 9</td>
<td>24 ± 4</td>
<td>38 ± 7</td>
<td>31 ± 6</td>
<td>22 ± 12</td>
</tr>
</tbody>
</table>

Concentrations (C) are reported for these conditions: a ozone level in reaction chamber without cleaning products; b VOC components in reaction chamber without ozone; and c volatile oxidation products in reaction chamber with both ozone and VOC components. d nd = not detected. Errors correspond to ±S.D. of duplicate determinations.
TABLE 2S. Reaction of Ozone with Orange Oil-Based Degreaser Components

<table>
<thead>
<tr>
<th>species</th>
<th>high O₃; 3 ach</th>
<th></th>
<th>high O₃; 1 ach</th>
<th></th>
<th>moderate O₃; 3 ach</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (ppb)</td>
<td>reacted (%)</td>
<td>C (ppb)</td>
<td>reacted (%)</td>
<td>C (ppb)</td>
<td>reacted (%)</td>
</tr>
<tr>
<td>ozone a</td>
<td>137 ± 9</td>
<td>85 ± 6</td>
<td>136 ± 7</td>
<td>95 ± 17</td>
<td>61 ± 2</td>
<td>82 ± 12</td>
</tr>
<tr>
<td>VOC components b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-limonene</td>
<td>643 ± 20</td>
<td>19 ± 2</td>
<td>738 ± 14</td>
<td>20 ± 6</td>
<td>586 ± 4</td>
<td>9.9 ± 1.1</td>
</tr>
<tr>
<td>volatile oxidation products c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>formaldehyde</td>
<td>32 ± 0.3</td>
<td>28 ± 0.2</td>
<td>36 ± 1</td>
<td>28 ± 1</td>
<td>13 ± 0.5</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>formic acid</td>
<td>14 ± 5</td>
<td>12 ± 4</td>
<td>19 ± 12</td>
<td>15 ± 9</td>
<td>4 ± 7</td>
<td>7 ± 15</td>
</tr>
<tr>
<td>acetic acid</td>
<td>20 ± 10</td>
<td>17 ± 8</td>
<td>31 ± 22</td>
<td>24 ± 18</td>
<td>8 ± 40</td>
<td>16 ± 81</td>
</tr>
</tbody>
</table>

Concentrations (C) are reported for these conditions: a ozone level in reaction chamber without cleaning products; b VOC components in reaction chamber without ozone; and c volatile oxidation products in reaction chamber with both ozone and VOC components.

Errors correspond to ±S.D. of duplicate determinations.
TABLE 3S. Reaction of Ozone with Air Freshener Components

<table>
<thead>
<tr>
<th>species</th>
<th>high O₃; 3 ach</th>
<th>high O₃; 1 ach</th>
<th>moderate O₃; 3 ach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (ppb)</td>
<td>reacted (%)</td>
<td>C (ppb)</td>
</tr>
<tr>
<td>ozone a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>126 ± 6</td>
<td>86 ± 15</td>
<td>127 ± 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63 ± 0.5</td>
</tr>
<tr>
<td>VOC components b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-limonene</td>
<td>121 ± 2</td>
<td>29 ± 2</td>
<td>165 ± 11</td>
</tr>
<tr>
<td>linalool</td>
<td>176 ± 3</td>
<td>36 ± 2</td>
<td>247 ± 17</td>
</tr>
<tr>
<td>linalyl acetate</td>
<td>66 ± 7</td>
<td>22 ± 9</td>
<td>88 ± 8</td>
</tr>
<tr>
<td>dihydromyrcenol</td>
<td>241 ± 3</td>
<td>4.5 ± 1.4</td>
<td>335 ± 23</td>
</tr>
<tr>
<td>β-citronellol</td>
<td>19 ± 1</td>
<td>40 ± 2</td>
<td>24 ± 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19 ± 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>volatile oxidation products c</th>
<th>C (ppb)</th>
<th>yield (%)</th>
<th>C (ppb)</th>
<th>yield (%)</th>
<th>C (ppb)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>formaldehyde</td>
<td>41 ± 0.4</td>
<td>38 ± 0.4</td>
<td>111 ± 2</td>
<td>90 ± 1</td>
<td>16 ± 2</td>
<td>29 ± 4</td>
</tr>
<tr>
<td>acetaldehyde</td>
<td>nd d</td>
<td></td>
<td>13 ± 0.4</td>
<td>11 ± 0.4</td>
<td>nd d</td>
<td></td>
</tr>
<tr>
<td>acetone</td>
<td>41 ± 5</td>
<td>38 ± 52</td>
<td>95 ± 1</td>
<td>77 ± 1</td>
<td>14 ± 0.6</td>
<td>25 ± 1</td>
</tr>
<tr>
<td>glycolaldehyde</td>
<td>13 ± 0.3</td>
<td>12 ± 0.2</td>
<td>33 ± 0.5</td>
<td>27 ± 0.4</td>
<td>7 ± 0.3</td>
<td>13 ± 0.5</td>
</tr>
<tr>
<td>formic acid</td>
<td>24 ± 6</td>
<td>22 ± 6</td>
<td>68</td>
<td>55</td>
<td>14 ± 6</td>
<td>25 ± 11</td>
</tr>
<tr>
<td>acetic acid</td>
<td>36 ± 23</td>
<td>34 ± 22</td>
<td>84</td>
<td>68</td>
<td>nd d</td>
<td></td>
</tr>
</tbody>
</table>

Concentrations (C) are reported for these conditions: a ozone level in reaction chamber without cleaning products; b VOC components in reaction chamber without ozone; and c volatile oxidation products in reaction chamber with both ozone and VOC components. d nd = not detected.

Errors correspond to ±S.D. of duplicate determinations.
TABLE 4S. Secondary Organic Aerosol Formation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Initial Growth Rate (nm min⁻¹)</th>
<th>peak concentrations</th>
<th>steady-state concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number (10⁵ cm⁻³)</td>
<td>mass a (µg m⁻³)</td>
<td>number (10⁵ cm⁻³)</td>
</tr>
<tr>
<td></td>
<td>PM₀.₁</td>
<td>PM₀.₄</td>
<td>PM₂.₀</td>
</tr>
<tr>
<td>pineapple oil-based cleaner (POC)</td>
<td>4.5</td>
<td>3.6</td>
<td>72</td>
</tr>
<tr>
<td>high O₃, 3 ach</td>
<td>3.8</td>
<td>2.4</td>
<td>46</td>
</tr>
<tr>
<td>high O₃, 1 ach</td>
<td>1.6</td>
<td>1.6</td>
<td>27</td>
</tr>
<tr>
<td>moderate O₃, 3 ach</td>
<td>2.6</td>
<td>1.2</td>
<td>19</td>
</tr>
<tr>
<td>Low O₃, 3 ach</td>
<td>2.6</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>orange-oil based degreaser (OOD)</td>
<td>5.8</td>
<td>1.4</td>
<td>37</td>
</tr>
<tr>
<td>high O₃, 3 ach</td>
<td>3.6</td>
<td>0.8</td>
<td>18</td>
</tr>
<tr>
<td>high O₃, 1 ach</td>
<td>5.0</td>
<td>0.6</td>
<td>15</td>
</tr>
<tr>
<td>air freshener (AFR)</td>
<td>5.0</td>
<td>0.4</td>
<td>10</td>
</tr>
<tr>
<td>high O₃, 3 ach</td>
<td>2.3</td>
<td>0.9</td>
<td>20</td>
</tr>
<tr>
<td>High O₃, 1 ach</td>
<td>4.3</td>
<td>0.2</td>
<td>6</td>
</tr>
</tbody>
</table>

a Mass concentration of particles assuming density of 1.0 g cm⁻³.

n.a.: data not available
FIGURE 1
FIGURE 2

Graph A: % yield of various compounds at different O3 levels and 3 ach.

Graph B: % yield of specific compounds at different O3 levels and 3 ach.

Graph C: % yield of specific compounds at different O3 levels and 3 ach.
FIGURE 3
FIGURE 4
FIGURE 5